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Abstract. In this work we further develop the stochastic models (SM) method which is 
an approximate computer simulation technique for treating many-body systems in ther- 
modynamic equilibrium, suggested by Alexandrowicz. The SM method, unlike the com- 
monly used Metropolis method, is not of a relaxation type. Thus, an equilibrium configur- 
ation is constructed at once by adding particles to an initially empty volume with the help 
of a model stochastic process. In previous work the transition probabilities (TP) have 
been expressed as a function of a set of parameters which had to be optimised on the 
basis of the minimum free energy principle. This choice of TP has the following disadvan- 
tages: (1) near to T,, the critical temperature, the required number of parameters increases 
and the method becomes impractical; (2) the functional form of the TP is defined in a 
somewhat intuitive way and, therefore, no criterion exists for systemafically improving 
their accuracy. In the present work the TP are defined in a different way and the method 
is applied as a test to the critical region of the square king lattice. First we define the 
exact TP, which are parameter independent; since their calculation is impractical for a 
large lattice we also define approximate TP (based on two parameters) which can be 
improved systemafically. The saving in computer time, compared with the previous work, 
(where 10 parameters have been used) is significant, and the accuracy of the free energy 
is increased by a factor of 4-100. The results for ,y, the magnetic susceptibility, are also 
improved, in particular for T < T,. Using the finite size scaling theory and assuming Y = 1, 
we estimate at T,, the exponent y to be 1.80*0.12. For Tf T, the efficiency of the new 
method is found to be comparable to that of the Metropolis method. At Tc, however, 
the Metropolis results for ,y are exceedingly poor. 

1. Introduction 

In this work we further develop the stochastic models (SM) method, which is an 
approximate computer simulation technique for treating many-body systems in 
thermodynamic equilibrium, suggested by Alexandrowicz (1971, 1972). The SM 
method, unlike the commonly used Metropolis Monte Carlo method (Metropolis et 
ai 1953, Fosdick 1963), is not of a relaxation type. Thus, an equilibrium configuration 
is constructed at once by adding particles to an initially empty volume with the help 
of a model stochastic process. In contrast to the Metropolis method the probability 
of the equilibrium configuration is known and this permits one to estimate the entropy 
(and hence the free energy) directly. The SM method procedure is naturally carried 
out in the framework of the (p,  V, T )  ensemble but can also conveniently be performed 
in the (N,  P, T )  ensemble, which in general fits better to the experimental conditions 
than the (N,  V, T )  ensemble. Because of this ab initio type of construction the 
configurations sampled are statistically uncorrelated and therefore much smaller 
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samples are required with the SM method than with the Metropolis procedure. The 
SM method has been recently applied to the square and cubic Ising lattices and good 
results have been obtained (Meirovitch and Alexandrowicz 1977a). In the present 
paper we shall use the abbreviation MA for that reference. The method was also 
applied to a fluid model consisting of hard cubic molecules with an attractive potential 
(Alexandrowicz and Mostow 1972) and to a lattice version of the Maier-Saupe model 
for nematic liquid crystals (Meirovitch 1977b). In all these works the transition 
probabilities (TP) of the stochastic process have been expressed as a function of a set 
of parameters which had to be optimised on the basis of the minimum free energy 
principle. This choice of TP has the following disadvantages: (1) near to T,, the critical 
temperature, where long-range correlations exist, the required number of parameters 
increases and the method becomes impractical (for the square king lattice, for example, 
a set of 10 parameters has been used by MA);  (2) the functional form of the TP is 
defined in a somewhat intuitive way and, therefore, no criterion exists for improving 
their accuracy sytematically. 

In the present work we use the construction procedure of the SM method but 
define the TP in a novel way, and apply the method as a test to the critical region of 
the square Ising lattice. Firstly we define the exact TP which are parameter independent. 
Since their calculation is impractical for large lattices we also define two kinds of 
approximate TP, based on one and on two parameters. These approximations to the 
exact TP, in contrast to those of previous work, can be improved systematically. The 
present results (obtained with the second approximation) are compared with results 
obtained by MA with the SM and the Metropolis methods and the efficiency of the 
three methods is discussed. 

2. The SM method construction procedure 

We shall now describe briefly the SM method lattice construction procedure as applied 
to the square Ising lattice with N = L x L spins; more details appear in MA.  We denote 
by g k  the spin variable at the lattice site k, where u k  has two possible values: + 1, 
- 1. The interaction is only betweeen nearest-neighbour spins and it is of a ferromag- 
netic type (the coupling interaction constant J > 0). The microscopic energy E, and 
magnetisation Mi of a particular configuration are given respectively by 

E, = -J f l k g [  
k l  

i n n )  

where (nn)  denotes nearest neighbours. The canonical ensemble 
(Boltzmann probability) P? of configuration i at the absolute temperature 
by 

P? = 2 - I  exp( - E i / k e T )  

(1) 

(2) 

probability 
T is defined 

(3) 

where 2 denotes the partition function and kg is the Boltzmann constant. The 
construction of a lattice configuration is carried out as follows: one begins with an 
empty lattice and fills the first row with spins which are distributed at random. 
Subsequently, the orientation of the spins on the lattice is fixed step by step by a 
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Monte Carlo lottery according to transition probabilities which depend on a given set 
of parameters x and on the L spins determined in the previous steps of the process. 
Once the construction of the lattice configuration i has been accomplished its micro- 
scopic energy and its probability Pi(x) beome known. Pi(x) is the product of the N 
TP with which the spins have been chosen. In this way a probability distribution (PD) 
is defined on phase space and a free energy functional F ( x )  can also be defined. The 
minimum free energy principle states that F ( x )  is never smaller than the exact free 
energy obtained with the Boltzmann probability Pa (equation (3)). The problem is 
to find the best approximate PD in the sense of this principle. Sampling n configurations 
with P ( x )  enables one to estimate F ( x )  by 

and then seek the optimal set of parameters x*  giving the minimum value to Fn(x).  
For this value one computes the average energy and the other lattice quantities of 
interest. 

In the present work we use the lattice construction procedure described above, 
but define the TP in a novel way. In the next section we first define the exact TP, i.e. 
those which lead to the Boltzmann distribution (equation (3)). Since they are parameter 
independent, no optimisation of equation (4) is required. The calculation of the exact 
TP, however, is impractical for large lattices and thereafter we describe two approximate 
TP based on one and on two parameters. 

3. The transition probabilities 

3.1. The exact transition probabilities 

Assume that we are at the kth step of the SM construction, i.e. the orientation of 
k - 1 spins has already been specified, and we want to specify the spin orientation u k  

at site k .  The exact TP is proportional to the conditional partition function Z(ukr Ik), 

The index i in ( 5 )  runs over all 2 N - k  possible spin configurations on the still empty 
lattice (sites k + 1 , .  . . , N) which can be obtained in future steps of the process (figure 
1). These yet undetermined spins should be distinguished from the k - 1 already fixed 
ones and we therefore call them the future spins; correspondingly, configuration i 
defined above will be called future configuration i. E ( i )  is the microscopic energy of 
the future configuration i .  Ikis  the row configuration of the last L spins added to the 
lattice (on sites k - L, . . . , k - 1 ) .  For a given future configuration i, J, denotes the 
row configuration of the L - 1 future spins on sites k + 1 ,  . . . , k + L - 1 (see figure 1). 
E(Ik, J , )  stands for the interaction energy between the two neighbour row configur- 
ations Ik and J,. E ( q ,  U ' )  denotes the interaction energy of u k  with its four nearest 
neighbours U'.  The normalised exact TP is therefore 

p ( u k l l k ) = z ( u k ,  I k ) [ z ( ( r , ,  I k ) + z ( - u k ,  I k ) I - '  = [ 1 + Z ( - g k ,  I k ) / Z ( u k r  1 k ) l - l .  ( 6 )  
It should be pointed out that the fact that p(Ukl&)  do not depend on all the k - 1 
already fixed spins, but only on Ikr  is due to the nearest-neighbour type of interaction 
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0 0 0 0 0 0 0 0 0 0  
Figure 1. An illustration of the kth step of the spiral construction of the square king 
lattice. Full circles denote lattice spins already specified in the previous steps of the process 
while open circles denote the still empty lattice sites. The full  curve indicates the present 
‘spiral’ boundary conditions. The broken lines define a rectangle of 26 x ( b  + 1) lattice 
sites with b = 3, for the first approximation. The crossed full circles o#) and the slashed 
full ones (2) denote groups A and B respectively, while group A’, and group B’ of the 
surface future spins are denoted by the crossed open (181) and slashed open circles CQ) 
respectively. The rest of the open circles denote group C. These groups are defined in 
the text. 

of the model; adding, for example, second neighbour interactions, would make P ( ( + k  Ilk) 
a function of the 2L last determined spins. It is easy to prove that a lattice configuration 
i is sampled with its Boltzmann probability Pa (equation (3)) if constructed according 
to the exact TP defined above; in this case there is no need of optimisation since the 
TP are free of parameters. However, calculation of the z L  exact TP is very time 
consuming for a large lattice and requires a huge computer memory. In order to 
make the calculation feasible we therefore introduce, in what follows, two kinds of 
approximate TP. 

3.2. The first approximation 

The first kind of approximate TP is based on dividing the L spins B k - L ,  . . , , into 
two groups. The first group, called group A, contains the 26 closest spins to site k 
(on sites k - L, . . . , k - L + b and k - b + 1,. . . , k - 11, where the effective distance of 
a spin from site k is defined by its shortest distance from site k measured on empty  
lattice bonds (see discussion by MA).  These spins are denoted by the crossed full 
circles (I[) in figure 1 and their effect is taken into account in an exact way. The 
L - 26 spins placed on the more distant sites ( k  - L + b + 1,. . . , k - b )  constitute group 
B (slashed full circles (e) in figure 1) and they are treated approximately by using a 
mean field parameter t. We define a 26 x ( b  + 1 )  rectangle (denoted by broken lines 
in figure A, with 2 b 2 + b  empty lattice sites, which consists of two groups of future 
spins: group A’ of the inner future spins (crossed open circles (€3) in figure 1) and 
group B’ of the surface future spins (denoted by slashed open circles (Q) in figure 1). 
The group of future spins located outside the rectangle is denoted by C. We define 
an approximate conditional partition function Z((+k, I, ,  6,  t ) ,  related to the rectangle, 
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and the corresponding TP are obtained by equation (6) ,  where z ( g k ,  I k ,  b, t )  replaces 
Z(", z k )  (equation ( 5 ) ) .  Z(gk, 4 , b ,  t ) ,  unlike z(gk, I k ) ,  takes into account exactly 
only the spins of groups A and A', whereas the effect of groups By B' and C is 
approximated as follows: each future spin U of the surface group B' interacts with its 
neighbour spins of groups A and A'; however, instead of also interacting with its 
neighbours of group C, c+ interacts with the mean field parameter t, contributing to 
Z ( q ,  z k ,  6, t )  factors of the type exp(Jtg/kBT). The parameter t represents the average 
effective magnetisation per spin of group C and therefore falls in the range [ - 1, + 13. 
We define the sign of t to be the same as that of the magnetisation of group B; 
therefore the sign of t is a function of k and might change during the SM construction 
process, in contrast to It1 which is constant for all the TP. lt*l, the absolute value of 
the optimal parameter, is a function of both b and T and is determined by minimising 
F,, ( t )  (equation (4)). Below the critical temperature, T,, where long-range order exists, 
I f * ]  is expected to be relatively large; above T, we expect It*/ -0. Obviously, as b is 
increased the approximation improves and the effect of t weakens; determination of 
t* in that case therefore requires higher statistical accuracy, which means a larger 
sample size. The approximation is valid as long as b is sufficiently large relative to 
the correlation length 6. Therefore, close to T,, where ,$ diverges, large values of b 
should be used which makes the calculation impractical. 

3.3. The second approximation 

We now describe a method which enables one to enlarge the dimensions of the 
rectangle defined in the previous section, but control the number of distinct TP. For 
this we divide the L spins V k - L , .  . . , into three groups. The first one (A) consists 
of the 26 nearest spins to site k (figure 2) .  The second group (B) contains the 2(a  - b )  

0 

Q 
0 

0 

0 

0 

0 

0 

Q 
0 

0 

0 

0 

0 

0 

0 
Figure 2. An illustration, similar to figure 1, for the second approximation. The crossed 
(10 and slashed t @ )  full circles denote groups A and B respectively. The full circles 
enclosed by triangles A denote group C. These groups are defined in the text. The broken 
lines define the inner and the outer rectangles of 26 x ( a  + 1)  and 2a x ( a  + 1) lattice sites 
respectively, with b = 3 and a = 5. 
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farther placed spins with b + 1 < r < a + 1 ,  where I is the distance of a spin from site 
k and a > b. The rest of the spins (with r > a  + 1) constitute the third group (C). 
Correspondingly we define two rectangles of dimensions 26 x ( a  + 1 )  and 2a x ( a  + 1 )  
(figure 2) ,  and a conditional partition function Z ( r k ,  Ik, a ,  b, c, f ,  f) related to them. 
c and f are parameters which will be defined below. The effect of the spins of group 
C is approximated in this function as before, by using a mean field parameter t, i.e. 
all future spins on the surface of the larger rectangle [2a x ( a  + l)] interact with f as 
has been explained in the previous section. 

The effect of the spins of group A is treated in an exact way (as in the first 
approximation) by taking into account the contribution of all future spins of the inner 
rectangle 26 x ( a  + 1). It should be pointed out that the future spins on the side 
boundaries of this rectangle interact with all their neighbour spins, including those 
which belong to the larger rectangle. These two groups of spins contribute a factor 

to the total number of TP; obviously, treating the spins of group B in an exact 
way would increase this number by a factor of 22(a-b) .  In order to control this number 
for large values of a - b we define the following approximation. We assume (as was 
assumed by MA) that the effect of a spin of group B decreases with distance r from 
site k as r - f ,  where f is a positive decay parameter. This enables us to define the 
normalised spin charges uR and uL for the configuration j of a - b spins from the 
right and left sides of site k respectively. 

22b+l 

In these summations individual spins are multiplied by the decreasing function m-’ 
where m is the distance (in lattice steps) from site k. uR (and rL) has 2”-’ distinct 
values, which fall in the range [ - 1 ,  + 1 ) .  We divide this range into c equal segments 
and find for each one of them the configuration j with U R ( j )  (or a&‘)) closest to the 
centre of the segment. Each of these c configurations is taken to represent all 
configurations j with value UR (or rL) within the limits of the segment. In this way 
the spins of the second group contribute a factor c2  to the total number of TP irrespective 
of their number 2(a-6).  Clearly, the larger c, the better the approximation. 

3.4.  Details of the computation of the TP 

In the present work we carry out calculations using the second approximation with 
b = 5 ,  a = 14 and c = 12. These values determine the computer program and are not 
changed during the optimisation procedure. In general the larger a,  b and c, the better 
the approximation. However, the choice of these parameters is mainly dictated by 
computer speed and memory. We found, for example, that for the above values of 
a and b increasing c from 10 to 12 (which is a trivial change in the program) lowered 
the free energy at T, by not more than about 2 x The conclusion is that for a 
better approximation either a or b should be increased but not c. In the present 
calculation we determined the width of the rectangle to be 12 lattice sites rather than 
14, which means that altogether 322 future spins are taken into account in the 
calculation of the TP. In order to make this calculation feasible we first compute the 
contributions of separate blocks of future spins and later combine them together. The 
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TP (102 400 in the present work) are calculated and stored in computer memory prior 
to the simulation process. Using the Q compiler on the IBM 370/165 about 3 minutes 
are required for the calculation of these TP and the construction of a 120x 120 lattice 
takes about 0.5 s. 

4. Results and discussion 

The essential part of the work is the determination of the optimal parameters f *  and 
f *  giving a minimum to the free energy functional estimator F,,(t , f)  (see equation 
(4)). Using the optimal parameters the average energy E, ( r * ,  f * ) ,  magnetisation 
M,,(t*,f*) and the order parameter IM,,(r*,f*)l are calculated. The equation for the 
order parameter is 

The specific heat C and the isothermal susceptibility per spin x are obtained from 
the variances of E and M respectively, using known thermodynamic relations (see MA).  

The results of the present work for the various thermodynamic quantities in the 
critical region are summarised in table 1, together with the corresponding values 
obtained by the accurate analytical solution and with approximate expressions based 
on series expansion. For comparison we give also results obtained by MA with the 
SM and the Metropolis methods. The exact correlation length (Fisher 1967) and the 
optimal values of the parameters, t* and f* are presented in the three bottom rows 
of the table. For K # K, ( K  = J / k B T  is the reciprocal temperature and K, its critical 
value) the present results have been calculated from samples of 5000 configurations 
whereas for the critical temperature, the sample size has been increased to 8000. In 
order to estimate the statistical error, for each temperature we have carried out several 
tests based on different random number sequences. The uncertainties in the results 
appearing in the table take into account the uncertainty in the determination of the 
optimal parameters, Let us discuss first the results for K # K,. The results of the 
present work for the free energy F are substantially better than those obtained with 
the SM method by MA. The improvement is especially significant in the cold region 
( K  > K,) where accuracy of about is achieved, which is 100 times larger than 
that obtained by MA. In the hot region ( K  <Kc) the accuracy in F is increased by a 
factor of 25-4, compared with MA, changing from 10'-4-3 x in going from 
K = 0.40 to K = 0.43 respectively. From the point of view of the minimum free energy 
principle this means that the probability distributions defined by the present TP are 
better than those defined by the SM method (MA) and the results here for the other 
thermodynamic quantities are therefore also expected to be more accurate. It should 
be pointed out that relatively accurate estimates for the entropy, and hence for the 
free energy, can also be obtained with the Metropolis method by employing a method 
suggested recently (Meirovitch 1977a). However, the best accuracy for F obtained 
so far with this method for the square lattice gas model is 30-1-10-20/~, which is 
significantly lower than that of the present work (Meirovitch and Alexandrowicz 
1977b). Very good agreement with the theoretical values is obtained with the present 
method for the energy E and the long-range order [MI, where the largest discrepancy 
0.4% occurs for the energy at K = 0.43. A comparable accuracy for these quantities 
has been obtained by MA with the SM and the Metropolis methods. In view of the 
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highly accurate results obtained here for both F and ]Mi one would expect to obtain 
accurate estimates for the pressure P in lattice models for fluids treated with the 
present method in the framework of the grand canonical ensemble. This is because 
P can be expressed by 

P =  P ( P  - F I N )  (9) 

where CL is the chemical potential, IV is the number of particles and p is the density, 
which corresponds to the magnetisation M of the Ising model (Fisher 1967). The 
magnetic susceptibility and the specific heat C are the two thermodynamic quantities 
most sensitive to the approximation used. For K # K, the results for C, obtained by 
the three methods, agree well with the exact values where the deviations do not exceed 
8%. The poor results obtained for ,y with the SM method (MA) in the cold region 
(accuracy of 25-50%) are substantially improved in the present work, where accuracy 
of 2-12% is achieved respectively. For K < K ,  a significant improvement in x is 
obtained for K = 0.43 (accuracy - 15%) whereas for the other temperatures the 
results of the three methods are about the same. It should be noted that the results 
for x obtained with the present method and the SM method (MA) always underestimate 
the correct values. 

The fact that the results of the present method in the cold region are much better 
than those of the SM method (MA) stems mainly from the more correct definition of 
the mean field parameter r in the present TP. In the hot region, however, where the 
long range order vanishes, the effect of t significantly weakens, which is expressed by 
an improvement in the results of the SM method (MA). We have confirmed this 
explanation by changing the definition of t in the present TP to the way it was defined 
in equations (12) and (15) of MA. The values for F obtained with the new definition 
were indeed much higher than those of the present work, and close to the results 
obtained with the SM method by MA. In this context it should be also pointed out 
that even with the TP of the present work the results for x for the hot region are 
better than those of the cold region. This is demonstrated, for example, at reciprocal 
temperatures K = 0.455 and K = 0.41 which have approximately the same correlation 
length 6 but the values of ,y deviate from the exact ones by 12% and 5 %  respectively. 

At K ,  we present results for 5 lattices, from L = 4 0  to L = 120, using a larger 
sample size of 8000 configurations; the uncertainty in the results, however, is still 
larger than that obtained for K # K, due to the larger thermodynamic fluctuations at 
K,. We compare the results with the exact solution for a finite lattice with periodic 
boundary conditions (PBC) (Ferdinand and Fisher 1969). It should be pointed out 
that the present screw boundary conditions (SBC) differ from the PBC, mainly because 
the first and last rows of the lattice do not interact. For small lattices, therefore, the 
PBC give significantly higher statistical weight than the SBC to configurations where 
the magnetisation of these two rows is of the same sign. One would therefore expect 
to obtain larger values for IMI, C and ,y and lower values for E with PBC than with 
the present calculations. The results for E and C confirm this expectation. The effect 
of the boundary conditions should be most significant for the smallest lattice L = 40; 
indeed, the corresponding value of F shows the largest deviation from the exact value. 
As is expected, this deviation decreases with increasing lattice size. Our results for 
F are much lower (and hence better) than those obtained with the SM method (MA). 

However, unlike for K # K,, it is impossible to determine their accuracy since no 
exact solution exists for a finite lattice with SBC. As has been already pointed out the 
results for C of the present calculation are smaller than the exact ones. In view of 
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the analytical solutions (Onsager 1944, Ferdinand and Fisher 1969) one would expect 
them to approximately satisfy a linear dependence 011 log L. We have made the best 
fit of these results to suck a function and obtained the expression 

C/NkB = 0.32 log L + 0.46 

which gives the values 1.64, 1.79, 1.84, 1.90, 1.99 for the five lattices L =40, 64, 76, 
90, 120 respectively; these results are in a good agreement with the corresponding 
values of C obtained with the present method. It should be noted however that the 
factors 0.32 and 0.46, which appear in equation (lo), differ from the corresponding 
pairs 0.495 and 0.198 and 0.495 and 0.188 obtained respectively for the PBC 

(Ferdinand and Fisher 1969) and for an infinite cylinder of width L (Onsager 1944). 
The finite-size behaviour of the magnetic properties (x  and lMI) is not known 

analytically even for PBC, hence we compare our results to Fisher’s finite-size scaling 
theory (Fisher 1970, Fisher and Barber 1972). According to this theory (Domb 1965, 
1970, Gunton 1968, Watson 1972, Muller-Krumbhaar and Binder 1972) the suscepti- 
bility x of a finite L x L lattice should increase with L as 

at K, and for large L 

where B is a constant and y and v are the exponents related to the susceptibility and 
to the correlation length, respectively. A similar relation is expected for /MI, the 
exponent -p replacing y. A plot of log ,y against log L gave a straight line with slope 
1.80*0.12, while the expected theoretical value is 1.75. This is slightly better than 
1.85*0.08 obtained for y by the SM method (MA).  We also obtain B =0.45*0.1, 
compared to B=0.7*0.1 obtained by MA and B = 1.00*0.04 obtained with the 
Metropolis method (Landau 1976). The absolute magnetisation decreases with 
increasing L (except for L = 120) but the decrease is less than that corresponding to 
the expected value p = i. The above estimates for y, based on the finite-size scaling 
theory, deviate 3 4 %  from the theoretical value and the range of error is relatively 
large. A new method, based on renormalisation group considerations, has been 
recently suggested (Swendsen 1979a, b, Blote and Swendsen 1979) which enables 
one to estimate the exponents from computer simulation results at K,. The method 
has been successfully applied to very long Monte Carlo runs at K, for the square and 
cubic Ising lattices and for other plane models. It would be of interest to apply the 
Swendsen analysis to our results at K,, where relatively small samples are required. 

Let us now discuss some computational aspects of the present method and the SM 
method (MA). For K f K, we use here samples of 5000 configurations, compared to 
1000 configurations used by MA. For several temperatures we also enlarge the lattice 
size from 90 to 120. This causes an increase in computer time which is necessary for 
accurate determination of the optimal parameters t* and f * ;  however, it enables us 
also to increase the accuracy of F significantly as previously discussed. A substantial 
saving in computer time is achieved with the present work, compared with the SM 
method (MA), by the fact that 2, rather than 10, parameters should be optimised. We 
decrease the computer time further by initially obtaining crude estimates of the optimal 
parameters from smaller samples, and then refining them by increasing the sample size. 

The results obtained with the Metropolis method (besides L = 76 at K,) are taken 
from MA. For each temperature they have been obtained from one Monte Carlo run, 
i.e. no attempt has been made to examine their accuracy, by carrying out more runs 
with different starting configurations and different random number sequences. For 
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K # K,, lo4 lotteries per spin (Ips) gave generally good results, besides the too low 
values obtained for x at K = 0.40,0.43 and K = 0.46. This indicates that much larger 
samples are required. A detailed analysis, based on an approximate formula for the 
fluctuation in the magnetisation (Muller-Krumbhaar and Binder 1973) has been carried 
out by M A  and led to the conclusion that for K C K, the sample size used should be 
increased by a factor of 2-10 in order to obtain accuracy of about 5 %  for x. At 
K = K,, however, where much stronger correlations exist between the sampled 
configurations the results obtained by MA for x are exceedingly poor, which means 
that very large samples are required. In fact, huge samples have been used in Monte 
Carlo studies of the square Ising lattice, for example: samples of about lo5 Ips have 
been studied at K = 0.425 (Ogita et a1 1969); at K, Swendsen uses 9 x lo4 Ips for 
L = 45 (Swendsen 1979a) and 3 x lo4 Ips for L = 108 and L = 81 (Swendsen 1979b). 
From our experience this last sample is still insufficient for obtaining good estimates 
of x. With the SM procedure, in contrast to the Metropolis procedure, the sampled 
configurations are statistically independent and therefore much smaller samples are 
required. On the other hand, one has to optimise the two parameters. In view of the 
results of the present method and the discussion of MA about the SM and the Metropolis 
methods we conclude that, as far as the square Ising lattice is concerned, the efficiency 
of the two methods is comparable for K # K,; at K,, however, the present method 
gives reasonable results for x whereas the results obtained with the Metropolis method 
are exceedingly poor. 

5. Conclusions 

In this work we define the TP for the SM method in a novel way, which is based on 
rigorous considerations, and apply the method, as a test, to the square Ising lattice. 
The new method is found to be comparable in efficiency to the MC method and 
significantly more efficient than the SM method studied previously (Meirovitch and 
Alexandrowicz 1977a). Very high accuracy is obtained for the free energy F (  - 
not (00 close to T,), much better than obtained with the MC method (Meirovitch and 
Alexandrowicz 1977b) or with other approximations for the square Ising lattice (Burley 
1972 and references therein). These results are important since from F one can derive 
all the thermodynamic quantities of a system. Also, the minimum free energy principle 
constitutes a criterion for defining the most stable state of a system, which is useful 
when different simulation runs lead the system to different free energy minima. F is 
also important in the case of a first-order phase transition, where two phases with the 
same free energy coexist. Near such transitions the MC method (because of long-range 
time correlations) gives rise to hysteresis loops (Landau and Binder 1978), which 
make it difficult to determine the transition point precisely. However, with the present 
method, which is not of a relaxation type, the hysteresis loops do not occur and one 
can construct the two phases and define the transition point accurately, by comparing 
their free energies (for details see Meirovitch 1977b). We expect, therefore, the 
present method to be more effective than the MC method for systems which undergo 
first-order transitions such as lattice gas models with nearest-neighbour exclusion and 
second (and third) neighbour interactions (Kinzel and Schick 1981), or Ising antifer- 
romagnets in an external magnetic field (Binder and Landau 1980). The present 
method (as well as the MC method) can also be applied to problems which were not 
solved with sufficient accuracy by other methods. For example, the estimation of the 
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critical exponents a and y for the hard-square lattice gas by series expansion is 
unsatisfactory (Baxter et a1 1980). Applying Fisher’s finite-size scaling theory (Fisher 
1970, Fisher and Barber 1972) or Swendsen’s method (Swendsen 1979a, b) to the 
simulation of this model with the present method might provide more accurate results. 
Finally, it should be pointed out that, in view of the poor convergence of the MC 
results, near phase transition, it is of interest also to have the present method (which 
is approximate but shows much faster convergence) as an alternative computer simula- 
tion technique. 
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